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Abstract
The main difficulty of quantum field theory is the problem of divergences
and renormalization. However, realistic models of quantum field theory
are renormalized within the perturbative framework only. It is important
to investigate renormalization beyond perturbation theory. However, known
models of constructive field theory do not contain such difficulties as infinite
renormalization of the wavefunction. In this paper an exactly solvable quantum
mechanical model with such a difficulty is constructed. This model is a
simplified analogue of the large-N approximation to the �ϕaϕa-model in six-
dimensional spacetime. It is necessary to introduce an indefinite inner product
to renormalize the theory. The mathematical results of the theory of Pontriagin
spaces are essentially used. It is remarkable that not only the field but also the
canonically conjugated momentum become well defined operators after adding
counterterms.

PACS numbers: 1110G, 0365D, 0230M, 0230S

1. Introduction

An essential feature of realistic models of QFT (such as quantum electrodynamics, Yang–Mills
theory etc) is the property of infinite renormalization of the wavefunction. This difficulty leads
to problems of canonical quantization of the theory. Since the coefficient z of the term ∂µϕ∂µϕ
of the Lagrangian diverges, the momentum canonically conjugated to the field ϕ should be
related to the time derivative of the field ϕ as

π = zϕ̇.

If we believe ϕ to be an operator-valued distribution [1], its derivative can be also interpreted
in the same way. Therefore, the momentum cannot be viewed even as an operator distribution
because of the infinite coefficient z.
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Infinite renormalization of the wavefunction is a serious difficulty in the constructive field
theory [2, 3]. Rigorous construction of mathematical models of QFT has been successful for
models with finite z only. The z = ∞ case leads to serious difficulties (see, e.g., [4]).

This paper deals with the exactly solvable quantum mechanical model with infinite
renormalization of the wavefunction. The Lagrangian of the model is formally written as

L = zQ̇2

2
− m2Q2

2
+

∞∑
k=1

(
q̇2
k

2
− �2

kq
2
k

2

)
− gQ

∞∑
k=1

µkqk. (1)

Here µk are real quantities, while �k , k = 1,∞, is an increasing sequence of real positive
numbers.

Renormalization properties of the model (1) depend on the large-k behaviour of the
sequence µk .

(a) If
∑
k µ

2
k/�k < ∞, the model is quantized in a standard way: one constructs the

Hamiltonian, introduces the creation and annihilation operators

qk = a+
k + a−

k√
2�k

q̇k = i

√
�k

2
(a+
k − a−

k )

with the commutation relations

[a±
k , a

±
m] = 0 [a−

k , a
+
m] = δkm

and shows the obtained Hamiltonian to be a correctly defined self-adjoint operator.
(b) If

∑
k µ

2
k/�k = ∞ but

∑
k µ

2
k/�

2
k < ∞, renormalization of vacuum energy is necessary.

The Hamiltonian is a self-adjoint operator with nontrivial domain.
(c) If

∑
k µ

2
k/�

2
k = ∞ but

∑
k µ

2
k/�

3
k < ∞, it is necessary to perform renormalization ofm2.

The vacuum divergences arise. They can be removed by the Faddeev transformation [5].
(d) If

∑
k µ

2
k/�

3
k = ∞ but

∑
k µ

2
k/�

4
k < ∞, there is an additional difficulty: the Stueckelberg

divergences [6] arise. They can be removed by the Faddeev-type transformation [7].
(e) If

∑
k µ

2
k/�

4
k = ∞ but

∑
k µ

2
k/�

6
k < ∞, one should perform infinite renormalization of

the wavefunction z.
(f) If

∑
k µ

2
k/�

6
k = ∞, it is necessary to add new counterterms to the Lagrangian.

In this paper the model (1) is mathematically constructed for the most interesting case (e).
The cases (a)–(d) are more trivial and can be investigated according to [8–10].

It is interesting that the z = ∞ case leads to an indefinite inner product in the state
space analogously to the Lee model [11–15], the perturbative Hamiltonian QFT [16] and the
strongly singular potentials in quantum mechanics [17–20]. The state space is the Fock space
associated with the one-particle Pontriagin space. The results of the general mathematical
theory of Pontriagin spaces [21–24] are essentially used.

It will be shown that the expressions

Q(t) zQ(t)−
∞∑
k=1

gµk

�2
k

qk(t) (2)

may be both viewed as operator distributions. Differentiating the second expression, we obtain
that the momentumP(t) canonically conjugated toQ(t) becomes an operator distribution after
adding a counterterm:

P(t)−
∞∑
k=1

gµk

�2
k

pk(t).

The model of the type (1) arises in the quantum probability theory [25, 26] and in the
condensed-matter theory (‘polaron model’ [27]).
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It is also an analogue of the model �ϕaϕa of a large number of fields which is viewed in
the leading order of 1/N -expansion. Namely, consider the theory of N fields ϕa interacting
with the field � in the (d + 1)-dimensional spacetime. The Lagrangian of the theory is

L =
N∑
a=1

:

(
1

2
∂µϕ

a∂µϕ
a − µ2

2
ϕaϕa

)
: +
z

2
∂µ�∂µ�− M2

2
�2 − g√

N
:

(
N∑
a=1

ϕaϕa

)
: �.

Analogously to [28] (see also [29–32]), introduce the ‘collective fields’, being the operators
of creation and annihilation of pairs of particles

A±
kp = 1√

2N

N∑
a=1

b±a
k b

±a
p

where b±a
k is a creation–annihilation operator of the particle with momentum k, which

corresponds to the field ϕa .
We will consider the states of the N -field theory which depend on the large parameter N

as follows: ∑
n

∫
dk1 dp1 · · · dkn dknA

+
k1p1

· · ·A+
knpn
χnk1p1...knpn

 (3)

with regular as N → ∞ coefficient functions χn and such a vector  that it does not contain
the particles corresponding to the fields ϕa .

Note that operators of the form∫
dk dp

1√
N

N∑
a=1

b+a
k b

−a
p ϕkp

multiply the norm of the state (3) by the quantity O(N−1/2). Therefore, they can be neglected
as N → ∞. In this approximation

[A−
k1p1

;A+
k2p2

] 	 1
2 (δk1k2δp1p2 + δk1p2δk2p1).

Consider the free Hamiltonian H0 = ∫
dkωk

∑N
a=1 b

+a
k b

−a
k , where ωk =

√
k2 + µ2. If

we consider the states of the form (3) only, it coincides with the operator∫
dk dpA+

kp(ωk + ωp)A
−
kp.

The operator 1√
N

∑N
a=1 ϕ

a(x)ϕa(x) is approximately equal to
√

2

(2π)d

∫
dk√
2ωk

dp√
2ωp

(A+
kpe−i(k+p)x + A−

kpei(k+p)x).

The leading order for the Hamiltonian in 1/N is

H =
∫

dk dpA+
kp(ωk + ωp)A

−
kp +

∫
dx

(
1

2z
#2(x) +

z

2
(∇�)2(x) +

M2

2
�2

)

+

√
2g

(2π)d

∫
dx

[∫
dk√
2ωk

dp√
2ωp

(A+
kpe−i(k+p)x + A−

kpei(k+p)x)

]
�(x). (4)

Equation (4) can be also obtained from the third-quantized approach [10, 33, 34].
We see that generalization of the model (1) with the Hamiltonian

H =
∑
i

(
P 2
i

2Z
+
Z

2
M2
i Q

2
i

)
+
∑
k

(
p2
k

2
+
�2
kq

2
k

2

)
+ g

∑
i

Qi
∑
k

µ
(i)
k qk
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resembles Hamiltonian (4) if one considers (k,p) instead of k, x instead of i and integrals
instead of sums. The field operator �(x, t) and Heisenberg creation–annihilation operators
related to the composed field ϕaϕa are analogues ofQi(t) and qk(t) correspondingly.

This paper is organized as follows. Section 2 deals with diagonalization of the
Hamiltonian. In section 3 renormalization of the model is performed. Section 4 deals with
constructing operatorsQ(t) and qk(t), which are analogues of field operators of the model (4),
and justifying the hypothesis that expression (2) corresponds to correctly defined operator
distributions in the renormalized theory.

2. Investigation of the regularized model

Let us quantize the model (1). Let & be a positive integer regularization parameter. Perform
a substitution µk → µ&k , where µ&k = µk at k < & and µ&k = 0 at k > &. Let z and m2 be
also & dependent, z& and m2

&. Then the Hamiltonian takes the form

H =
∑
mn

( 1
2pmZ

−1
&,mnpn + 1

2qmM
2
&,mnqn) (5)

where Z&,mn, m, n = 0,∞ andM2
&,mn are matrices of the form

Z& =
(
z& 0
0 1

)
M2
& =

(
m2
& gµ&

gµ& �2

)

q0 ≡ Q, p0 ≡ P is a momentum conjugated toQ and pk are momenta conjugated to qk .
Suppose that there exist operators (Z−1

& M
2
&)

±1/4. After transformation

qm = 1√
2

∞∑
n=0

((Z−1
& M

2
&)

−1/4Z−1
& )mn(b

+
n + b−

n )

pm = i√
2

∞∑
n=0

(M2
&Z

−1
& )

1/4
mn (b

+
n − b−

n )

(6)

the Hamiltonian (5) takes the form

H& =
∞∑

mn=0

b+
m[(Z−1

& M
2
&)

1/2Z−1
& ]mnb

−
n (7)

up to an additive constant interpreted as vacuum energy, which can be removed by
renormalization.

The canonical commutation relations are written as

[b±
m, b

±
n ] = 0 [b−

m, b
+
n] = Z&,mn. (8)

Choose the Fock representation for the operators b±
m. Any state vector can be presented as

 =
∞∑
n=0

1√
n!

∑
k1...kn

ψ
(n)
k1...kn

b+
k1

· · · b+
kn

|0〉 (9)

where |0〉 is a vacuum state, b−
k |0〉 = 0 andψ(n)k1...kn

are functions of k1 . . . knwhich are symmetric
with respect to their transpositions. Relations (8) imply that the inner product can be presented
as

(�,�) =
∞∑
n=0

∑
k1...knp1...pn

ψ(n)∗p1...pn
Z&,p1k1 · · ·Z&,pnknψ(n)k1...kn

(10)
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while the Hamiltonian operator acts as

(H&ψ)
(n)
k1...kn

=
n∑
i=1

∑
pi

(Z−1
& M

2
&)

1/2
kipi
ψ
(n)
k1...ki−1piki+1...kn

. (11)

The evolution operator can be written as

(e−iH&tψ)
(n)
k1...kn

=
n∑
i=1

∑
p1...pn

(e−i(Z−1
λ M

2
&)

1/2t )k1p1 · · · (e−i(Z−1
& M

2
&)

1/2t )knpnψ
(n)
p1...pn

.

By P& we denote the space of sets ψk , k = 0,∞, with the indefinite inner product

〈ψ,ψ〉& = (ψ,Z&ψ). (12)

We see that the state space is the Fock space associated with P&:

F(P&) = ⊕∞
n=0P∨n

&

where P∨n
& is the nth symmetric tensor degree of the space P& [1]. The evolution operator is

e−iH&t = ⊕∞
n=0(exp(−i(Z−1

& M
2
&)

1/2t))⊗n.

3. Problem of renormalization

(1) There are several ways to renormalize a quantum field theory model. For example,
one can first evaluate such vacuum expectations as Green or Wightman functions [1, 35], r-
functions [36] or S-matrix coefficient functions [37,38] for the regularized theory and consider
the limit & → ∞ for these quantities. Then the Wightman reconstruction theorem [35] or its
analogue can be applied.

In the approach based on the dynamical Hamiltonian equations of motion rather than the S-
matrix another way to perform a limit& → ∞ can be used. IfH& is a regularized Hamiltonian
acting in the Hilbert space H, one can try to choose a unitary operator T& : H → H (‘dressing
transformation’ [2, 5]) singular as & → ∞ such that the operator

T +
&e−iH&tT&

has a strong limit as & → ∞. The limit

U(t) = s − lim
&→∞

T +
&e−iH&tT& (13)

can be interpreted as an evolution operator in the renormalized theory. The difficulty of our
case is that different spaces F(P&) are considered at different values of &. Another essential
feature is that F(P&) are not Hilbert spaces but indefinite inner product spaces. Therefore, the
requirement (13) should be modified.

We say that renormalization is performed if:

(i) a Hilbert inner product is introduced on F(P&);
(ii) a Pontriagin space L (‘renormalized state space’) is specified;

(iii) an operator T& : L → F(P&) is defined;
(iv) for some operator U(t) : L → L (‘renormalized evolution operator’) and any vector

 = (ψ0, ψ1, . . . , ψn, 0, 0, . . .)

||T&U(t) − e−iH&tT& || →&→∞ 0. (14)
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Condition (14) is a modification of condition (13). Its physical meaning is the following.
Suppose that T& is chosen to be an initial state in the regularized theory. Then the state at
time t can be approximated by the vector T&U(t) . The operator U(t) can be viewed as a
renormalized evolution operator.

Note also that relation (14) means that the operator e−iH&t : F(P&) → F(P&) tends to
U(t) : L → L in a generalized strong sense [39, 40].

We will choose L = F(P),
T& = ⊕∞

n=0(P&)
⊗n

for some Pontriagin space P and some operator P& : P → P&.

(2) To introduce a Hilbert inner product on F(P&), it is sufficient to introduce it on P&. The
standard method is the following [22]. Let e& be an element of P& such that 〈e&, e&〉& < 0.
Denote by [e&] the one-dimensional space {λe&|λ ∈ C}, while [e&]⊥ is the space of all
vectors ψ such that 〈ψ, e&〉& = 0. If the inner product is positively definite on [e&]⊥, the
indefinite inner product space is of the type #1 [21, 22]. We see that this is true for the
case e& = (1, 0, . . .), provided that z& < 0 (this condition will be shown to be satisfied at
sufficiently large &). The positive definiteness of the inner product on [e&]⊥ for arbitrary e&
is a corollary of the general theory of Pontriagin spaces [22].

The Hilbert inner product is introduced as

(f, g)e& = 〈f, g〉& + 2
〈f, e&〉&〈e&, g〉&

|〈e&, e&〉&| . (15)

One can notice that (f, g)e& = 〈f, g〉& if f, g ⊥ e&, (f, g)e& = −〈f, g〉& if f, g ∈ [e&] and
(f, g)e& = 0 if f ∈ [e&], g ⊥ e&. All topologies on P& that correspond to different choices
of e& are equivalent [22]. However, specification of e& is important since the convergence
requirement (14) is formulated in terms of norms || · || ≡ √

(·, ·)e& .

(3) It seems to be physically reasonable to choose the vector e& as an eigenvector of the operator
Z−1
& M

2
& entering the Hamiltonian. Since Z−1

& M
2
& is a Hermitian operator with respect to the

inner product (12), it has according to the Pontriagin theorem [21] an eigenvector e& such that
〈e&, e&〉 < 0. Let us find its explicit form. Equation Z−1

& M
2
&e& = ε&e& is rewritten as

m2
&c& + gµ&k φ&,k = ε&z&c&

gµ&k c& +�2
kφ&,k = ε&φ&,k

where e& = (c&, φ&). Therefore, for φ&,k one has

φk = gµkc

ε −�2
k

. (16)

The parameter ε& obeys the following equation:

ε&z& −m2
& = g2

∑
k

(µ&k )
2

ε& −�2
k

. (17)

For vector (16) 〈e&, e&〉 < 0 if and only if

−b& ≡ z& + g2
∑
k

(µ&k )
2

(ε& −�2
k)

2
< 0. (18)

It follows from the Pontriagin theorem [21] that equation (17) has a (real or complex) solution
obeying property (18).

Denote by

z&,R = z& +
∑
k

(µ&k )
2

�4
k

m2
&,R = m2

& −
∑
k

(µ&k )
2

�2
k

(19)
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the renormalized values of parameters of the theory.
Equation (17) can be presented in the following form:∑

k

(µ&k )
2

�2
k

(
1

ε& −�2
k

+
1

�2
k

)
= z&,R −m2

&,R/ε&. (20)

It is possible to perform a limit & → ∞, provided that z& and m2
& are chosen to make z&,R

and m2
&,R finite as & → ∞:

z&,R → zR m2
&,R → m2

R.

If
∑
k µ

2
k/�

4
k = ∞ but

∑
k µ

2
k/�

6
k < ∞, the infinite renormalization of the wavefunction is

indeed necessary, while z& is negative at sufficiently large &.
The following cases should be considered.

(i) m2
R > 0. Equation (20) has a negative solution ε < 0 obeying condition (18). Hamiltonian

system (5) is unstable.
(ii) m2

R < 0, zR > 0. There is an alternative. There may be no real solutions of equation (20)
obeying condition (18). There may also be two real negative solutions. The smaller one
obeys requirement (18). The Hamiltonian system (5) is also unstable.

(iii) m2
R � 0, zR < 0. Equation (20) may have no real solutions obeying condition (18) or

may have a real positive solution satisfying requirement (18). The latter case takes place
at sufficiently small |mR|2. The Hamiltonian system is stable.

Let us consider the most interesting latter case only. Note that the condition zR < 0 arises
in investigations of large-N QED [41].

If m2
R = 0, the formalism of the previous subsection should be slightly modified (the

operator (Z−1
& M

2
&)

−1/4 does not exist). For simplicity, consider the case m2
R �= 0 only.

Let us introduce more convenient coordinates on the Pontriagin space P& in order to
remove divergences from Hilbert and indefinite inner products. First of all, present any vector
ψ ∈ P& as

ψ =
(

0
ϕ

)
+ ce&

where

e& =
(

1
gµ&k
ε&−�2

k

)
.

One finds

(e&, ψ) = −b&c +
∞∑
k=1

gµ&k ϕk

ε& −�2
k

where b has a limit as & → ∞. Introduce instead of c the new variable α = −b−1
& (e&,ψ):

α = c − b−1
&

∞∑
k=1

gµ&k ϕk

ε& −�2
k

.

In terms of new variables (α;ϕ) the inner products (12) and (15) take the form

〈ψ,ψ〉& = −b|α|2 + 〈〈ϕ, ϕ〉〉&
(ψ,ψ)e& = b|α|2 + 〈〈ϕ, ϕ〉〉& (21)

with

〈〈ϕ, ϕ〉〉& = (ϕ, ϕ) +
1

b&

∣∣∣∣
(

gµ

ε −�2
, ϕ

)∣∣∣∣
2

. (22)
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Formula (22) contains no divergences.
By P̃& we denote the Pontriagin space of sets (α, ϕ) with inner products (21). The

introduced isomorphism I& : P̃& → P& has the following form: I& : (α, ϕ) �→ (c, φ), where

c = α +
1

b&

∞∑
k=1

gµ&k ϕk

ε& −�2
k

φk = c
gµ&k

ε& −�2
k

+ ϕk.

(23)

(4) It seems to be reasonable to specify the renormalized states by sets ψ = (α, ϕ). By P̃ we
denote the indefinite inner product space of such sets with inner products

〈ψ,ψ〉 = −b|α|2 + (ϕ, ϕ) +
1

b

∣∣∣∣
(

gµ

ε −�2
, ϕ

)∣∣∣∣
2

(ψ,ψ) = b|α|2 + (ϕ, ϕ) +
1

b

∣∣∣∣
(

gµ

ε −�2
, ϕ

)∣∣∣∣
2

with ε = lim&→∞ ε&, b = lim&→∞ b&. However, P̃ cannot be viewed as a state space. First,
the sequence gµk

ε−�2
k

does not belong to l2, so one should impose the conditions on ϕk at k → ∞.

For example, one can require �ϕ ∈ l2. Next, the Euclidean space with the inner product (·, ·)
is not complete, so it is necessary to consider the completeness P of the space P̃ .

Investigate the explicit form of the space P (cf [42]).
Let {(α(n), ϕ(n))}, {(α(n)′ , ϕ(n)′)} be fundamental sequences. They are equivalent [43] if

||ψ(n) − ψ(n)′ || →n→∞ 0. This means that

α(n) − α(n)′ →n→∞ 0
||ϕ(n) − ϕ(n)′ || →n→∞ 0(gµ
�2

;ϕ(n) − ϕ(n)′
)

→n→∞ 0.
(24)

Furthermore, since the sequence {(α(n), ϕ(n))} is fundamental, sequences α(n), ϕ(n) and
(
gµ

�2 ;ϕ(n)) are also fundamental. Therefore,

α(n) →n→∞ α

ϕ(n) →n→∞ ϕ(gµ
�2

;ϕ(n)
)

→n→∞ ξ.

(25)

Thus, two fundamental sequences are equivalent if and only if α′ = α, ϕ′ = ϕ and ξ ′ = ξ .
Let us show now that for any set (α, ξ, ϕ) there exists a fundamental sequence obeying

conditions (25). Note that any sequence obeying requirements (25) is fundamental. It is
sufficient to consider two partial cases:

(i) ϕ = 0;
(ii) α = ξ = 0.

Denote χk = gµk/(ε −�2
k). For case (i), set

α(n) = α

ϕ
(n)
k = ξχk

/ n∑
k=0

|χk|2 k � n.

ϕ
(n)
k = 0 k > n.
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For case (ii), it is sufficient to check that the set of all vectors ϕ ∈ l2 satisfying the relations

(χ, ϕ) = 0 (26)

is dense in l2. To prove this property, it is sufficient to notice that any finite vector ϕ can be
approximated by a sequence ϕ(n) → ϕ obeying requirement (26):

ϕ
(n)
k =


ϕk − (χ, ϕ)∑n

k=0 |χk|n χk k � n

ϕk k > n.

Thus, the renormalized state space P is a space of sets (α, ϕ, ξ), where ϕ ∈ l2, α ∈ C, ξ ∈ C.
The following inner products are introduced in P:

(ψ,ψ) = b|α|2 + (ϕ, ϕ) + b−1|ξ |2
〈ψ,ψ〉 = −b|α|2 + (ϕ, ϕ) + b−1|ξ |2. (27)

(5) Let us construct the mapping P̃& : P → P̃& which transforms the renormalized state
(α, ξ, ϕ) to the regularized state (α&, ϕ&). Choose it in such a way that

α& →&→∞ α ||ϕ& − ϕ|| →&→∞ 0(
gµ&

ε& −�2
, ϕ&

)
→&→∞ ξ.

(28)

The mapping P& : P → P& will have the form P& = I&P̃&.
The following proposition is a direct corollary of equations (21).

Proposition 1. Let P̃& : (α, ξ, ϕ) �→ (α&, ϕ&) be a mapping satisfying requirements (28).
Then

||(α̃&, ϕ̃&)− P̃&(α, ξ, ϕ)|| →&→∞ 0

if and only if (α̃&, ϕ̃&) obeys requirements (28).

Proposition 1 tells us that the form of operator T& obeying requirements (28) is not
important.

ByQ& : P̃& → P we denote the operatorQ& : (α&, ϕ&) �→ (α′
&, ξ

′
&, ϕ

′
&) of the form

α′
& = α& ϕ′

& = ϕ& ξ ′
& =

(
gµ&

ε& −�2
, ϕ&

)
.

Proposition 1 can be reformulated as follows:

Proposition 1′. Let (α&, ϕ&) ∈ P̃&. Then ||(α&, ϕ&)|| → 0 if and only ifQ&(α&, ϕ&) →&→∞
0.

Equation (28) also implies:

Proposition 2.

s − lim
&→∞

Q&P̃& = 1. (29)

We will also require that

〈P̃&ψ, P̃&ψ̃〉 →&→∞ 〈ψ, ψ̃〉 ||P̃&|| � A = const (30)

for some &-independent a.
The explicit form of the mapping P̃& : (α, ξ, ϕ) �→ (α&, ϕ&) can be chosen as

ϕ& = ϕ +
χ&(ξ − (χ&, ϕ))

(χ&, χ&)
α& = α
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where χ& = gµ&

ε&−�2 . The properties α& → α, (χ&, ϕ&) = ξ → ξ at & → ∞ are evident.
Since ||χ&|| → ∞, one has

s − lim
&→∞

χ&

(χ&, χ&)
= 0.

It is sufficient then to check that

lim
&→∞

(χ&, ϕ)

||χ&|| ϕ ∈ l2. (31)

For finite sequences ϕ, property (31) is evident. It follows from the standard theorems of
functional analysis [44] that property (31) is then satisfied for all ϕ ∈ l2.

(6) To check property (14), it is convenient to investigate the resolvent of the operatorZ−1
& M

2
&.

To find its explicit form,

(λ + Z−1
& M

2
&)

−1 :

(
c

φ

)
�→
(
c

φ

)
one should solve the system of equations

(λz& +m2
&)c

′ + gµ&φ′ = z&c

gµ&c′ + (λ +�2)φ′ = φ.

Therefore,

c′ = a&

[
z&c − g

∞∑
k=1

µ&k φk

λ +�2
k

]

φ′ = 1

λ +�2
φ − gµ&

λ +�2
c′

with

aλ =
(
λz& +m2

& −
∑
k

g2(µ&k )
2

λ +�2
k

)−1

.

Making use of the (α, ϕ)-coordinates, one obtains

α′ = 1

λ + ε&
α

ϕ′ = 1

λ +�2
ϕ +

gµ&(ε& + λ)a&
(ε& −�2)(λ +�2)

(
gµ&

λ +�2
;ϕ
)

(equation (17) is taken into account). Thus, the explicit form of the operator I−1
& (λ +

Z−1
& M

2
&)

−1I& : (α, ϕ) �→ (α′, ϕ′) is found. This operator is Hermitian at real values of λ
with respect to Hilbert and indefinite inner products (21).

(7) Investigate now the behaviour of the resolvent at & → ∞. Consider the operator
Q&I

−1
& (λ + Z−1

& M
2
&)

−1I& : (α, ϕ) �→ (α′, ξ ′, ϕ′), which can be presented as

α′ = α

ϕ′ = 1

λ +�2
ϕ − gµ&(ε& + λ)a&

(ε& −�2)(λ +�2)
ξ +

gµ&(ε& + λ)2a&
(ε& −�2)(λ +�2)

(
gµ&

(ε& −�2)(λ +�2)
, ϕ

)

ξ ′ = −(λ + ε&)a&b&

(
gµ&

(ε& −�2)(λ +�2)
, ϕ

)
−

∞∑
k=1

g2(µ&k )
2(ε& + λ)a&

(ε& −�2)2(λ +�2)
ξ

(32)

(equation (17) is used), where ξ = (
gµ&

ε&−�2 , ϕ).

Denote the mapping (32) as (λ + H&)−1 : (α, ξ, ϕ) �→ (α′, ξ ′, ϕ′). It is a resolvent of a
positive self-adjoint operator. We have obtained the following proposition.
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Proposition 3. The following relation is satisfied:

Q&I
−1
& (λ + Z−1

& M
2
&)

−1I& = (λ +H&)
−1Q&.

We see that the operator (λ +H&)−1 has a strong limit (λ +H)−1, being a resolvent of a
positive self-adjoint operator. General results of [39,45] tell us that the following statement is
satisfied.

Proposition 4. Let f be a bounded Borel function. Then

s − lim
&→∞

f (H&) = f (H).

Proposition 3 also implies that:

Proposition 5. For any bounded Borel function f : R → R

Q&I
−1
& f (Z

−1
& M

2
&)I& = f (H&)Q&.

Let us prove relation (14).

Proposition 6. For any bounded Borel function f : R → R and any ψ ∈ P
||f (Z−1

& M
2
&)P&ψ − P&f (H)ψ || →&→∞ 0.

Proof. Since I& : P̃& → P& is an isomorphism, proposition 1′ implies that relation (3) is
satisfied if and only if

||Q&I−1
& f (Z

−1
& M

2
&)I&P̃&ψ −Q&P̃&f (H)ψ || →&→∞ 0.

It follows from proposition 5 that this relation can be rewritten as

||f (H&)Q&P̃&ψ −Q&P̃&f (H)ψ || →&→∞ 0. (33)

It follows from propositions 2 and 4 that s − lim&→∞ f (H&)Q&P̃& = f (H), i.e.

||f (H&)Q&P̃&ψ − f (H)ψ || →&→∞ 0. (34)

Proposition 2 also implies that

||f (H)ψ −Q&P̃&f (H)ψ || →&→∞ 0. (35)

Combining equations (34) and (35), we obtain relation (33). Proposition 6 is proved. �
(8) Thus, we have constructed the renormalized state space L = F(P). The ‘one-particle’
renormalized space is chosen to be a space of sets (α, ξ, ϕ) with the inner products (27); the
Hamiltonian operator is also defined by specifying the resolvent (λ + H)−1. The evolution
operator U(t) entering equation (14) has the form

U(t) = ⊕∞
n=0(e

−iH 1/2t )⊗n.

4. ‘Field’ operators

Let us construct now Heisenberg field operators Q(t), qk(t) and their linear combinations in
the renormalized theory. According to equations (6), they should be expressed via creation
and annihilation operators. Let us recall their definition (see, e.g., [1]).

The set of all vectors ψ⊗n is a total set in P∨n. By b−
n (γ ) : P∨n → P∨(n−1),

b+
n(γ ) : P∨(n−1) → P∨n, γ ∈ P , we denote the linear operators which are uniquely defined

from the relations

b−
n (γ )ψ

⊗n = √
n(γ, ψ)ψ⊗(n−1)

b+
n(γ )ψ

⊗(n−1) = n−1/2
n−1∑
j=0

ψ⊗j ⊗ γ ⊗ ψ⊗(n−1−j).
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Moreover, ||b±
n (γ )|| � n1/2||γ ||. By b±(γ ) : F(P) → F(P) we denote the operators

(b+(γ ) )n = b+
n(γ ) n−1 (b−(γ ) )n−1 = b+

n(γ ) n

which are defined on the set of all finite vectors of the Fock space.

Proposition 7. The following relations are satisfied:

b+(P&γ )T& = T&b
+(γ ) b−(γ&)T& = T&b

−(P +
&γ&)

for arbitrary γ& ∈ P&, γ ∈ P .

The proof is straightforward.

Proposition 8. Let γ& ∈ P&, γ ∈ P , is a finite vector of the renormalized Fock space F(P)
and

||γ& − P&γ || →&→∞ 0. (36)

Then

||b±(γ&)T& − T&b±(γ )) || →&→∞ 0. (37)

Proof. For the creation operator, equation (37) means that

||b+(γ& − P&γ ) || →&→∞ 0.

Let  = (ψ0, ψ1, . . . , ψn, 0, 0, . . .). Then

||b+(γ& − P&γ ) || � max(1, ||P&||n)|| ||n1/2||γ& − P&γ || →&→∞ 0.

For the annihilation operator, it is necessary to check that

||T&b−(P +
&γ& − γ ) || →&→∞ 0 (38)

for  ∈ P∨n. The Banach–Steinhaus theorem [44] implies that it is sufficient to prove
property (38) for  = ψ⊗n, ψ ∈ P . This property is correct if and only if

(P +
&γ& − γ,ψ) →&→∞ 0

i.e. (γ&, P&ψ) →&→∞ (γ, ψ). Equations (36) and (30) confirm this property. The proposition
is proved. �

Propositions 1′ and 8 imply the following corollary.

Proposition 9. Let γ& ∈ P&, γ ∈ P , is a finite vector of the renormalized Fock space F(P)
and

||Q&I−1
& γ& − γ || →&→∞ 0. (39)

Then property (37) is satisfied.

We see that the operator b±(γ&) in the regularized theory corresponds to the operator
b±(γ ) in the renormalized theory. One can say b±(γ&) → b±(γ ) in a generalized strong
sense [39, 40].

Note that the linear combinations
∑
k b

+
k ζk and

∑
k b

−
k ζ

∗
k of the operators b±

k (6) can be
presented as b+(ζ ) and b−(ζ ) correspondingly with ζ ∈ P&.

Consider the linear combination
∑∞
k=0 qk(t)χ

&
k in the regularized theory. It follows from

equations (6) that
∞∑
k=0

qk(t)χ
&
k = b+(γ t&) + b−(γ t&)

with

γ t& = 1√
2

ei(Z−1
& M

2
&)

1/2t (Z−1
& M

2
&)

−1/4Z−1
& χ&.

Propositions 4, 5 and 9 imply the following statement.
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Proposition 10. Let

Q&I
−1
& Z

−1
& χ& →&→∞ γ . (40)

 is a finite vector of the renormalized Fock space F(P). Then∣∣∣∣
∣∣∣∣
( ∞∑
k=0

qk(t)χ
&
k T& − T&qt (γ )

)
 

∣∣∣∣
∣∣∣∣ →&→∞ 0

with

qt (γ ) = b+

(
1√
2

eiH 1/2tH−1/4γ

)
+ b−

(
1√
2

eiH 1/2tH−1/4γ

)
.

Let us write down the explicit form of condition (40). Let χ& =
(
c&

φ&

)
, γ = (α, ξ, ϕ),

ϕ& = φ& − z−1
& c&

gµ&

ε& −�2
.

Equation (40) means that

||ϕ& − ϕ|| →&→0 0

(
gµ&

ε& −�2

)
→&→0 ξ z−1

& c& →&→0 α + ξ/b. (41)

We see that the operator
∑∞
k=0 qk(t)γ

&
k in the regularized theory corresponds to the operator

q(γ ) in the renormalized theory, provided that requirements (41) are satisfied.

Example 1. Let �φ ∈ l2, �φ& → �φ, c& = 0. Then the expression
∑∞
k=1 qk(t)φk

corresponds to the operator q(α, ξ, φ) in the renormalized theory, where

α = −ξ
b

ξ =
(

gµ

�(ε −�2)
,�φ

)
ϕ = φ.

Example 2. Let c& = 1, φ& = 0. Then the expression
∑∞
k=0 qk(t)γ

&
k takes the form Q(t).

For this case α + ξ/β = 0,

ϕ& = −z& gµ&

ε& −�2

so that ||ϕ&|| →&→∞ 0,(
gµ&

ε& −�2
, ϕ&

)
= −z−1

& (−b& − z&) →&→∞ 1.

Thus, ξ = 1, so that α = −1/ξ . We see thatQ(t) → qt (−1/b, 1, 0).

Example 3. Let c& = z&, φ& = gµ&

ε&−�2 . Then ϕ& = 0, ξ = 0, α + ξ/b = 1. Thus, the
expression

z&Q(t) +
∞∑
k=1

gµ&k qk(t)

ε& −�2
k

corresponds to the operator qt (1, 0, 0) in the renormalized theory.

Combining examples 1–3, we find that the expressions (2) correspond to correctly defined
operators in the renormalized theory.
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